Kakuro game — Submission 2 (of 2)

Adam Glos, Ozlem Salehi
June 5, 2022

This is the first submission out of two, which uses 8 CNQOTs for an oracle.

Contents

1 The original problem 1

2 Implementation of conditions 3
21 o4 2F T3 . o e e e e e e e e e e e e e 3
22 T3 =2 . . e e e e e e e e e e 3
2.3 .’1:396.’174, 113742:1,27375275 4
24 o4+ T4+ T3 =3 . . e e e e e e e e e e e e 4

1 The original problem

The goal of the problem was to find solution to the system of equations

To # T1 (1)
T2+2#23 (2)
T3 F# Ty (3)
T # T3 (4)
T3 # Tj (5)
z5 # Te (6)
To # T2 (7)
T # Tp (8)
T4 F Te 9)
T3 =2 (10)
To+ T4+ 23=3 (11)

where all z; € {0,1} except z3 € {0,1, 2,3} using Grover algorithm.
Instead of starting in the uniform superposition of all possible values, we already encoded
some of the constraints into the initial state. Thanks to this we have the following benefits:

1. because we started at the superposition of smaller number of basic states, we can use less
number iterations of Grover’s search, which would likely give significant reduction in
number of gate

2. the conditions are moved from the verification in the oracle to the initial state preparation
and slightly more advanced Grover mixer, which now makes an inversion around mean
only around the states we start in

3. therefore, the constraints which are encoded in the initial state do not need to be verified
in the oracle which greatly saves the number of CNOTs,

4. finally let us highlight that the constraints were not ignored or classically opti-
mized, but simply we chose alternative way of encoding them into Grover algo-
rithm. Thus we believe the rules of the competition are not violated

5. this method is extremely difficult (if not impossible to do it efficiently) for all the con-
straint, thus it would likely lead to exponentially-complicated quantum circuit, which is
usually beyond assumptions made for Grover algorithm.

For our purposes we choose conditions zg # z3, 1 # Tg, T5 # T1, T F T5, T4 7 Tg. Note
that if |z2) = |0), then it means that |zo) = |1}, |z1) = |0), |z5) = |1}, |z6) = |0) and |z4) = |1)
based on the conditions. Symmetric scenario would occur if we would start with |z3) = |1).
This means that we should start in the state

1

|z2, z0, 21, Z5, 26, T4) ® |T3) = (\/5(|10101) + |01010)) ® = (]00) + |01) + |10) + |11)) (12)

1
2
where registers were reordered for readability. The state for the |z3) is created as usualy through
Hadamard gates on both qubits, while for the rest it is done as follows:

1. Hadamard gate is applied on register x5,

2. CNOT is applied with control on z5 and target on zy. Then NOT is applied on z3. Then
we obtain 713(|01) +]10)),

3. CNOT is applied with control on zy and target on z,. Then NOT is applied on z;. Then
we obtain =(|010) + [101)), etc.

The Grover mixer is then as follows: we apply inverse of state preparation unitary. Then we
apply the traditional part of the Grover diffusion : NOT on all qubits corresponding to register
x;, multi-controlled Z gate on the same qubits, and again NOT on all qubits. Finally a state
preparation unitary is applied.

Note that similar technique was used to create Grover Mixer for QAOA, which relies on the
very similar effect https://arxiv.org/abs/2006.00354.

The oracle was implemented as follows. First we prepared a set of n qubits, which are all
supposed to be equal to |1) iff all conditions are met. Different qubit(s) are corresponding to
different conditions from above, thus any qubit set to |0) means the corresponding condition is
not satisfied. Then we apply the multi-controlled Z operation with controls on first (n—1) qubits
and target on the last qubits (note in controlled Z there is actually no difference between control
and target qubits). This multi-controlled Z corresponds to changing the [1...1) to —|1...1)
and doing nothing for other states. Such multi-controlled Z operation was implemented by
applying Hadamard gate on the target qubit, multi-controlled NOT gate with same controls
and target, and again Hadamard gate on the target qubit. We used v-chain implementation
of multi-controlled NOT given by qgiskit, which consists of appropriately applied many phase-
relative Toffoli gates RCCX (which greatly limits the number of CNOTs) and a single true
Toffoli gate as below

Applying multi-controlled Z should be interpreted as marking the solution. Then, unitary
preparing mentioned n qubits is uncomputed (equivalent to applying its inverse which is simply
reverse order of inversion of gates).

The core part is to appropriately prepare n qubits for the remaining conditions. We will
dedicate next section to how this conditions were implemented.

2 Implementation of conditions

Some constraints are implemented inplace (no additional bits are used and bits representing the
variables become the control of multi controlled Z) and for some new constraint bits are used.

In all cases except the single Toffoli in the multi-controlled Z we replaced the Toffoli gate
with relative phase Toffoli (RCCX). This has not effect on the solution as the incorrected phases
are uncomputed. Thus whenever we will say Toffoli gate we in fact mean RCCX gate.

We would like to mention that two sequences of bits a, b equal if their XOR is all-zero. This
can be simulated by CNOT-gates with controls on bits of a and target on bits of b. This way
on b register we will have |0...0) iff a = b.

2.1) + 2 # I3
We need additional ancilla bit for the constraint bit.

1. we XOR-ed least significant bit of z3 with x4, and XOR-ed most significant bit of 3 with
1 (effectively applied NOT gate). Now z3 is |00) iff 23 == z2 + 2,

N

we applied NOT on both bits of z3. Now z3 is |11) iff z3 == x4,

we applied Toffoli with controls on z3 and target on the constraint bit,

- w

we applied NOT on the constraint bit to change equality condition to inequality,

5. we undo the first two steps (cleaning part).

2.2 T3 = 2
we store this constraint on additional ancilla qubit. What we did is,

1. we added 2 modulo 4 to the register |z3) which is equivalent to applying NOT on its most
significant bit,

2. we applied Toffoli with controls on z3 and target on extra constraint bit to set it to |1} if
the condition is met

3. we undo adding 2

2.3 x3# T4y, T3 # T, T3 F T

Let’s consider first scenario, the rest is similar. For each we need single additional constraint
qubit. We do the following:

1. we XOR-ed least significant bit of z3 with z4. Now z3 is |00) iff z3 == 4,
we applied NOT on both bits of 3. Now z3 is |11) iff 23 == x4,

we applied Toffoli with controls on z3 and target on the constraint bit,

Ll S

we applied NOT on the constraint bit to change equality condition to inequality,

5. we undo the first two steps (cleaning part).

2.4 I2+I4+.'L'3=3

In this step we store the LHS sum on the register 3 by making first inplace addition z3+4+ = x2
and then z3+ = z4. Then the condition is satisfied iff on register z3 we have |3) = |11), so both
bits of z3 becomes constraint bits.

Note that 0 < z3 + z4 + 3 < 6. Therefore to check the constraint it is enough to verify
equality to 3 modulo 4, which justifies why we can make inplace addition on register z3.

The addition z3+ = z4 was done as follows (using so-called half-adder):

1. we applied Toffoli gate with control on =4 and the least significant bit of 3 and target on
the most significant bit of z3

2. we applied CNOT gate with control on z4 and target on the least significant bit of 3

Normally half-adder requires extra bit for carry-out, and extra for solution bit, see https:
//www.qmunity.tech/tutorials/building-a-half-adder-circuit. However here since we
make an inplace addition to z3 register, and the most significant bit can play a role of carry-out
bit, the above method is a general method of applying bit 0 to two-bit register modulo 4. In fact
the above simplification can always be made for z4+ =y mod 2* on two most significant bits
of z if y € 0,1 and 3 using k bits.

