Solution by Naman Jain

Kakuro: A constraint satisfaction problem

The list of constraints is:

1. x0 # x1

11.x2+ x4 +x3 ==3

There are 5 different types of constraints here —

¢ Single qubit register inequality
Multi-qubit register inequality

Sum of quantum registers
Qubit register equality

Each of these constraints are addressed separately to build the oracle.

There are a total of 8 qubits required to hold the variables from x0 to x6.
(Since x3 is a two qubit register and all other variables are single qubit
registers.)

1 additional qubit initialized in |-> state is needed to apply a phase flip.

Qubit count: 9
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1. Single qubit register inequality

To implement an inequality constraint between two single qubit
registers, it is required to ensure that both of them are distinct. This can
be achieved by an XOR operation between them. A quantum circuit that
does this, is shown below.
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The register — out is 1 if and only if a0 # al. The constraints numbered
1, 6,7, 8 and 9 are implemented this way. Since each of these requires 2
CX gates and 1 extra qubit to temporarily hold the value of the
inequality check, the qubit and CX gate count stands at CX gate count:
5 x 2 =10, Qubit count: 9 + 5 = 14.

2. Multi-qubit register inequality

To implement an inequality constraint between two registers of different
sizes, it is sufficient to check the OR of inequality in each bit position.
So, if a and b are two registers of sizes m and n (m < n), then a # b if

(ao # by) OR ... (a1 #* byy—y) OR (b, # 0) OR ...(b,_, # 0)

Each individual inequality check may be implemented as previously
done for the single qubit case. To note that, XOR(y,0) = y. A Quantum
Circuit implementing this check is shown below for two registers of
sizes 1 and 2.



X —6

Solution by Naman Jain

yo —-Q—

Y1

-

0“‘4;—.—

In the above circuit, the first CX gate implements the XOR of x and y,.
The result is stored in y,. The last CX gate restores the value of y, by
undoing the XOR operation. The part of the circuit between the two
barriers implements the OR operation. The register — out is 1 if and only
if (x # y,) OR (y; # 0). The constraints numbered 3, 4 and 5 require
this implementation. Hence, the number of CX gates, CCX gates and
Qubit count stands at CX gate count: 10 + 2*3 = 16, CCX gate count: 3
Qubit count: 14 + 1*3 =17.

i+

3. Addition of constant

To implement the second constraint, X2 + 2 # x3, it is required that
(x2 + 0 # x3p) OR (x31 # 1). This is obtained by simply writing 2
in binary and applying the inequality over the individual bits (using the
fact that x2 is a single qubit register and x3 is a two-qubit register). The
circuit that implements this is shown below.
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The total gate and qubit counts stand at
gate count: 3+1 =4, Qubit count: 17 +1 = 18.

CX gate count: 16 +2 =18, CCX
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4. Sum of quantum registers

To implement the constraint X2 + x4 + x3 == 3, it can be broken
down into two parts - (x2 + x4 + x3¢9 == 1) AND (x3, == 1).
This is accomplished with the below circuit.

X2 —

X30

X3 —_

x4

temp — —

out —

The register — temp holds the value of x2 + x4 + x3,, and the register
— out holds the value of the AND operation. The total gate and qubit
count stand at CX gate count: 18 + 3 =21, CCX gate count: 4 + 1 =35,
Qubit count: 18 + 2 = 20.

5. Qubit register equality

The constraint x3 == 2 is written as (x39 == 0) AND (x3, == 1).
The second part of this, x3; == 1 has already been implemented above.

Therefore, to implement x3, == 0, the following circuit is used.
o Sl
X3 —
out e

The register — out is 1 if and only if x3, == 0. The gate and qubit count
stand at CX gate count: 21 + 1 = 22, CCX gate count: 5, Qubit count:
20+1=21.
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Consolidating all of these constraints, it is now required to AND them
together and apply a phase flip to the solution states. The
straightforward way is to apply a multi-controlled (specifically, 11

qubits controlled) Toffoli gate with the target qubit being initialized in

the state = \/_2“). The phase kickback mechanism marks the solution

state in such a system.

However, multi-controlled Toffoli operations are expensive and one of
the ways to go around this is to use extra qubits and sequentially apply a
series of CCX gates.
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The above two circuits are equivalent in terms of operation, but the one
on the right is far less expensive than the one on the left. Therefore, to
AND 11 constraints, 9 extra qubits and 10 CCX gates are required.

So, the total count is CX gate count: 22, CCX gate count: 5 + 10 =15,
Qubit count: 21 + 9 = 30.
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Further optimizations:

e If the constraints are re-ordered, so that 7, 8 and 9 are pushed to the end,
the inequality checks can be implemented with just one CX gate than
two of these gates. The registers are not used later, and so can be over-
written temporarily. The over-written registers are uncomputed after the
applying the phase flip.

e Each CCX gate requires 6 CX gates to be implemented. But there is a
variant — the Margolus gate that implements the Toffoli gate up to a
relative phase and requires only 3 CX gates, which is the minimal
amount possible. It has been shown that this simplified Toffoli gate can
be used in place of the CCX gate where it is uncomputed again.

e The qubit register equality check may be directly implemented without
the need for an additional qubit or CX gate.

Doing these optimizations, the CX count: 22 — 4 =18, CCX count: 15,
Qubit count: 30 — 4 = 26.

Doing uncomputation makes the total count increase by a factor of 2. CX
count: 18 + 18 = 36, CCX count: 14 + 1 + 14 = 29, Qubit count: 26.

Therefore, in total -

CX gates: 36 + z 8*%3 + ! *6 =126 (Since one CCX gate cannot be replaced by the Margolus gate)
Qubits: 26
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The oracle without uncomputation is shown below —

Each of the constraints are separated by a barrier. The variables are
represented by x, — x, with x3 and x, representing the LSB and MSB of
x3 respectively, and subsequent variables are ordered in the standard order.

A snapshot of the probability histogram is also shown below —
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The ordering in qiskit is reversed. So, the solution is read as —
x0=0,x1=1,x2=1,x30=0,x31=1,x4=0,x5=0,x6 = 1.
Since the true_value of x0 and x2 is qubit_value + 2, the final solution is —

x0=2,x1=1,x2=3,x3=2,x4=0,x5=0,x6 = 1.
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As seen below, this is the valid solution to the given problem —

Grover’s algorithm requires approximately VN iterations (calls to the oracle)
to mark the solution state. But since this problem has constraints, the search
space is much reduced. Experiments have shown that using 4 or 5 Grover
operators produces the solution state with much higher probability than the
other states.

--- End of explanation ---



