
1 Overview

In my approach, I constructed the MCX gate in 3 parts: concentration,
calculation, and uncomputation.

In the concentration part, I chose a set of qubits and store the logical
AND state into an ancilla qubit. This process can reduce the number of
variables because we can use the stored state instead of the input. Next, I
calculated the logical AND state of the variables and stored it into the out-
put. After that, I uncomputed the ancilla qubits by inverting the quantum
gates used in the concentration part.

2 Approximate MCX Gates

In this section, I introduce some depth-efficient MCX gates that don’t pre-
serve the input states. These gates cannot be used in the calculation part,
but are useful in the concentration and uncomputation part.

2.1 Reduced Toffoli gate

A Toffoli gate can be decomposed into 6 CNOT and 9 unitary gates. Among
these gates, 2 CNOT and 3 unitary gates are used for preserving the control
qubits (see Fig.1).

A reduced Toffoli gate doesn’t contain the gates in red area, so this can
reduce the circuit depth.

Figure 1: Reduced Toffoli gate. The gates in red area can be removed if the
control qubits don’t need to be preserved.

2.2 RY (θ)-based Toffoli gate

There is another option for constructing a Toffoli gate (see Fig.2). This gate
only uses 3 CNOT and 4 unitary gates, but requires the destination qubit
to be clean.

1



Figure 2: RY (θ)-based Toffoli gate. This gate can properly perform the
logical AND operation, but may add an extra phase.

2.3 RY (θ)-based CCCX gate

There are 2 types of RY (θ)-based CCCX gates (see Fig.3 and Fig.4). The
latter one is constructed based on the Toffoli gate in Fig.2 and can be exe-
cuted faster beacuse it needs less elementary gates.

Figure 3: RY (θ)-based CCCX gate.

Figure 4: Another RY (θ)-based CCCX gate. We can get this gate by re-
placing the second CNOT gate in Fig.2 with a reduced Toffoli gate.

2.4 RY (θ)-based CCCCX gate

I constructed a CCCCX gate based on the CCCX gate shown in Fig.3. This
gate is drawn in Fig.6 below.

2



Figure 5: RY (θ)-based CCCCX gate.

2.5 RY (θ)-based CCCCX gate (with 1 clean ancilla)

We can construct this gate by combining 2 RY (θ)-based Toffoli gates and 1
RY (θ)-based CCCX gate(in Fig.3). This CCCCX gate uses a clean ancilla
qubit to store the output of the Toffoli gate so that we can execute the
Toffoli (and uncomputation) and CCCX in parallel.

Figure 6: RY (θ)-based CCCCX gate (with 1 clean ancilla).

3 Exact MCX gates

In the calculation part, an exact MCX gate is needed because we have to
keep the control qubits to retain the same.

3.1 Exact Toffoli gate

Fig.9 shows a decomposed Toffoli gate obtained from the default transpiler.
This decomposition is not optimal, so I changed the gate execution order in
the manner below and parallelized the CNOT and unitary gates.

|q0⟩ • RZ

|q1⟩

|q0⟩ RZ •

|q1⟩

Figure 7: RZ-control commutation.

3



|q0⟩ • •
|q1⟩ •

|q2⟩

|q0⟩ • •
|q1⟩ •

|q2⟩

|q0⟩ • •
|q1⟩ •

|q2⟩

Figure 8: control-control, target-target commutation.

Figure 9: Exact Toffoli gate. This requires 11 time steps for execution.

Figure 10: Depth-optimized Toffoli gate. This requires 2 less time steps for
execution.

4



3.2 Exact CCCX gate

Using the same method, I changed the gate execution order and reduced the
circuit depth.

Figure 11: Exact CCCX gate. This requires 27 time steps for execution.

Figure 12: Depth-optimized CCCX gate. This requires 6 less time steps for
execution.

5



4 Finding the minimum depth

To find the best solution for depth minimization, I wrote a Python script
that can test any possible circuit that uses approximate/exact MCX gates.

When searching the optimal circuit, a MCX gate can be drawn as a block
shown in Fig.13 and 14. The algorithm virtually connects these blocks, and
calculates the minimum circuit depth. After connecting these components,
we can calculate the depth of each qubit using the equation below:

depth(qout) = max
qin

(depth(qin) + width(qin, qout)) (1)

where the set of width(qin, qout) is determined by the shape of MCX gates.
For example, {4, 6, 7} for Toffoli gate, {8, 10, 12, 13} for CCCX gate (shown
in Fig.13), and {12, 14, 18, 20, 21} for CCCCX gate (shown in Fig.14).

When calculating the circuit depth, we can arrange the order of input
qubits so that the depth will be minimized.

Figure 13: The block representation of a RY (θ)-based Toffoli/CCCX gate.
The Toffoli gate requires 4 and 6 time steps for each input, and 7 for the
output. The CCCX gate requires 8, 10, and 12 time steps for each input,
and 13 for the output.

Figure 14: The block representation of a RY (θ)-based CCCCX gate. This
gate requires 12, 14, 18, and 20 time steps for each input, and 21 for the
output.

6



5 The circuit

Fig.15 shows my solution. In this circuit, 2 RY (θ)-based Toffoli gates, 2
RY (θ)-based CCCX gates, 4 RY (θ)-based CCCCX gates, 2 RY (θ)-based
CCCCX gate (with 1 clean ancilla), and an exact Toffoli gate are used to
perform as a 14-controlled MCX gate.

Figure 15: The 14 input qubits, 5 ancilla qubits, and 1 output qubit are
drawn as blue, green, and red line(s).

7


